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We report on the analysis of the electrical properties of Schottky barrier diode structures 
based on gallium oxide (Ga2O3). Ga2O3 has been grown by chloride-hydride vapor phase 
epitaxy on Al2O3 substrate. Samples with different amounts of Sn impurity are experimen-
tally characterized. Surface and cross-sectional scanning electron microscopy images,  
X-ray diffraction patterns and current-voltage characteristics of Ga2O3 layers both with 
and without contact pads are presented. The value of the Ga2O3 optimal doping is deter-
mined and the parameters of the surface treatment that is performed before the contact pads 
deposition are established. 
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1. INTRODUCTION 

Nowadays, there is a noticeable increase in research of 
semiconductors with an ultra-wide band gap (UWBG) 
such as AlGaN, diamond, Ga2O3, etc. [1–7]. UWBG 
semiconductors have visible prospects of applications 
for power electronics and optoelectronics due to their 
unique properties including high critical breakdown 
electrical field [8]. 

Gallium oxide is of great interest because of the value 
of band gap Eg from 4.5 to 5.3 eV [11,12] and high critical 
breakdown field, which for an unalloyed Ga2O3 reaches 
8 MV/cm [13]. Gallium oxide has 5 phases: α, β, γ, δ, ε(κ); 
the most thermodynamically stable one is β-Ga2O3, the 
phases α- and ε(κ)-Ga2O3 can be made in the metastable 
state as thin layers deposited on a substrate [9,10]. First 
prototypes of α-, β-, ε(κ)-Ga2O3-based devices were al-
ready fabricated for power electronics and optoelectronics 
applications thus establishing a promising direction for the 
industry development [15–17]. 

In Ref. [17], the design for Schottky barrier diode 
(SBD) based on Ga2O3 was proposed. The design included 
Pt/Ti/Au anode on the front side of the sample to form 

Schottky contact, an active region of unintentionally 
doped (Si doped for n-type conductivity) monocrystalline 
β-Ga2O3 and Ti/Au back side cathode to form ohmic con-
tact. In Ref. [18], a similar structure was presented, how-
ever, a drift layer was added under the Schottky contact. 
This layer was also doped with Si. In Ref. [19], the authors 
considered the variant of design for SBD based on gallium 
oxide, where epitaxial layer Ga2O3 was used as a drift 
layer.  

There are several problems when fabricating electronic 
devices based on Ga2O3 layers, such as control of optimal 
growth conditions, doping, layer thickness, etc. Manufac-
turing Ga2O3-based devices faces the challenge of creating 
contacts that requires improving not only contact material 
adhesion and electrical stability, but also reducing contact 
resistance [21]. 

In this work, we report on the growth by hydride vapor 
phase epitaxy (HVPE) Sn doped Ga2O3 layers on Al2O3 
substrates. We describe structural and electrical character-
istics of Ga2O3/Al2O3 samples suitable for SBD fabrica-
tion and measure the electrical properties of the designed 
samples with Schottky contacts. 
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2. MATERIALS AND METHODS  

A gallium oxide layers were grown on c-plane of α-Al2O3 
substrates at atmospheric pressure using a horizontal 
HVPE reactor. The source of Ga in the growth process was 
inorganic compound GaCl, which was delivered to the 
growth zone by an inert gas and oxidizer O2. GaCl vapor 
was formed because of the reaction of HCl or Cl2 gases 
with metallic Ga at growth temperatures. The growth was 
limited by mass transfer and, consequently, it was in-
creased with the partial pressure of the GaCl or HCl/Cl2 
source in the reactor. The method provides layers at a suf-
ficiently high growth rate, 70 μm/h depending on the 
growth conditions [22]. 

Gallium oxide was doped in a single technological pro-
cess at a growth temperature (Table 1). Sn was used as an 
alloying impurity. A sample of Sn was placed in a boat. 
The gas flow captured the Sn atoms and transferred them 
to the reactor. The amount of dopant was controlled by 
changing the carrier gas flow. 

The structure of β-Ga2O3 layers was analyzed by 
means of X-ray diffraction (XRD). A DRON-8 (Bure-
vestnik) X-ray diffractometer in a slit configuration with 
LLF X-ray tube with a copper anode and a NaI(Tl) scin-
tillation detector was used in these studies. The morphol-
ogy of the layers was analyzed using scanning electron 
microscopy (SEM) MIRA 3 (TESCAN) with the accel-
erating voltage of 5–30 keV. The concentration of impu-
rities was measured using energy dispersive X-ray spec-
troscopy with Aztec (Oxford Instruments) equipment.  

Polishing was used to obtain better adhesion of the 
metal to the surface of the epitaxial layer. Ga2O3 surface 
was polished using polishing machine and diamond abra-
sive paper with a grain size of 0.05 µm for 5 minutes. Pol-
ishing was carried out parallel to the sample plane. 

To obtain the structure of Schottky barrier diode, con-
tact pads with a width of 1 mm were applied along the 
entire sample (sample size 3 × 3 mm) of Au to create a 
Schottky contact (electron affinity for Ga2O3 equals 4 
eV, work function for Au is 5.23 eV), and of In to obtain 
a pseudo-ohmic contact (work function for In is 4.09 
eV) [23]. Gold contacts were applied by cold magnetron 
sputtering. The Q150T Plus (Quorum Technologies) 
spraying unit ensured uniform spraying the Au. The 

indium contacts were applied using a soldering station. 
Pure In (99.999%) was used. 

The I-V curves were measured using the two-probe 
method. Tungsten needles were installed on the surface 
layer of Ga2O3 layer (the distance between the probes is 
1 mm). The data were obtained using Keithley 2601 (Tek-
tronix) measuring device. Repeated measurements of I-V 
curves were obtained when the probes were installed on 
the contact pads.  

3. RESULTS AND DISCUSSION 

The production of electronic devices requires high-quality 
monocrystal Ga2O3 layers with a thickness of several mi-
crons [24]; our structure shows a layer thickness of 10 µm. 
SEM studies demonstrate that the epitaxial layers grew ac-
cording to the Stransky-Krastanov mechanism of growth 
due to high layer and substrate lattices mismatch that is 
consistent with data given in Ref. [25]. Such mechanism 
may be related to the granular structure of Ga2O3. At in-
sufficient temperature and (or) with a short-term process a 
homogeneous layer fails to form (coalescence does not oc-
cur), and separate “islands” are observed. Fig. 1 presents 
the confirming images. 

The samples under investigation with their properties 
are described in Table 2. The geometric features of the 
samples were studied by SEM. According to the images 

Table 1. Technological parameters of the growth [22]. 

Parameter Value 

Substrate material α-Al2O3 (0001) 
Growth temperature, °С 650–850 
Carrier gas flow, l/min 6 
Air flow, l/min 2 
Precursor flow, cm3/min 600 

Fig. 1. SEM images of the surface (a, b) and cross-section (c, d) 
of the epitaxial Ga2O3 layer. The coalescence zones present in 
all images confirm the Stransky-Krastanov growth mechanism 
of the epitaxial layer. (a) A close-up of the area with a partially 
formed homogeneous layer; (b) a close-up of the boundary of 
the formation of a homogeneous layer; (c) the first cross-sec-
tional area for sample 1; (d) the second cross-sectional area for 
sample 1. 
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(Fig. 1), the surface is quite heterogeneous. Layer demon-
strates crystal grains fusing together. SEM images of the 
samples cross-section clearly show that homogeneity of 
the layer was achieved only in small areas. 

XRD completed the study of structural features on 
SEM. Figure 2 shows the XRD data for the Ga2O3/Al2O3 

heterostructure. The semi-logarithmic scale on diffracto-
grams was used to show that the grown layers demonstrate 
a relatively high purity of the phase composition and an 
insignificant number of undesirable intermetallic com-
pounds and other compositions. The typical values of full 
width at half maximum (FWHM) for the long-range order 
reflections of Ω-scan rocking curves for experimental 
Ga2O3 layers were about 45 arcmin, that indicates the high 
crystal quality of the layers. For alloyed HVPE layers, the 
FWHM of rocking curve is about 45 arcmin. In XRD anal-
ysis in Ref. [24], the plane (004) for the epsilon phase is 
considered, this is the second order of reflection. In our 
case, the samples are doped and the increase in FWHM for 
the long-range order reflection curve is quite natural. 

The main characteristic of epitaxial layers and the fur-
ther development of diode structures is the dependence of 
current on voltage. Figure 3 contains the results of I–V 

curves measurements of samples immediately after 
growth without additional processing. Voltage at knee — 
the opening voltage of the diode, this voltage differs de-
pending on the amount of doping. UO equals 0.9 V for 
sample with average doping. The dotted lines indicate a 
current of 3 µA. The voltage values at a fixed current vary 
quite a lot. Changing the number of impurities leads to 
worse results. Therefore, a flow rate of doping impurity 
that does not lead to saturation is necessary. 

To form Schottky and pseudo-ohmic contacts with bet-
ter adhesion of the metal to the surface of the epitaxial 
Ga2O3 layer, polishing was used. Figure 4 shows the sur-
face of epitaxial layers after polishing with a diamond 
disc. Demonstrated roughness is several times less than 
the size of the diamond crumb, that is necessary for form-
ing contact pads. 

The results of electrical measurements for SBD struc-
ture are given in Figure 5. Comparing I–V curves with and 
without contacts shows that the application of contact pads 
made it possible to increase the current up to 20 mA at a 
voltage of 5 V. Without contacts, the maximum current 
value at 5 V was 0.2 mA. 

Table 2. Studied samples. 

Sample number Crystal structure of Ga2O3 layer Substrate Impurity concentration in a layer, at/cm3 

1 β  α-Al2O3 1017 
2 ε + α α-Al2O3 1018 
3 β α-Al2O3 1020 

 (a) (b) 

(c) (d) 

(e) 

Fig. 2. Results of XRD studies of Sn doped Ga2O3 samples: (a) and (b) diffraction patterns for the β-Ga2O3 layer; (c) and (d) diffraction 
patterns for the (ε+α)-Ga2O3 layer; (e) rocking curve for (0010) plane of ε-Ga2O3 phase. 
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4. CONCLUSIONS 

The HVPE Ga2O3 layers grown on Al2O3 substrates have 
been used as a basis for Schottky barrier diode structures. 
The structural quality of Ga2O3 layers was studied using 
scanning electron microscopy and X-ray analysis. It has 

been shown that the full width at half maximum of rocking 
curve increases with an increase in the degree of doping 
of the considered layers. It has been demonstrated that the 
grown Ga2O3 layers had a rough surface, therefore, me-
chanical polishing of the surface was used before wearing 
the contact pads — indium pseudo ohmic contact and gold 
Schottky contact. 

The electrical properties of Ga2O3 Schottky barrier 
structure have been measured using the two-probe 
method. It has been shown that this Schottky barrier struc-
ture allows to receive a current of 20 mA at a voltage of 
5 V. A complex dependence of electrical conductivity on 
the number of impurities has been found. Adding a lot of 
dopant impurities led to a deterioration in electrical con-
ductivity. Thus, during the growth process, it is necessary 
to use such a flow rate of dopant impurity that does not 
lead to saturation. 

Summing up all the above, this article presents the re-
sult of Ga2O3 HVPE layers growth, their structural 

Fig. 4. SEM images cross-section of sample 2 after polishing. 

Fig. 5. I–V curves of the sample 2 SBD structure. The light strip 
in the inset is a pseudo-ohmic contact, the gray strip is an active 
layer of Ga2O3, the dark strip with flashes is an Au Schottky con-
tact, the cones are tungsten needles as probes. 

 (a) 

(b) 

(c) 

Fig. 3. I–V curves layers Ga2O3 for samples. (a) Sample 1, (b) 
sample 2, (c) sample 3  



The Electrical Properties of Schottky Barrier Diode Structures Based on HVPE Grown Sn Dopped Ga2O3 Layers 37 

analysis, sample preparation, including mechanical pol-
ishing of the semiconductor layers, fabrication of Ga2O3 
Schottky barrier structure and its electrical properties in-
vestigation. The data presented in this article will form the 
basis for the fabrication of next generation devices based 
on Ga2O3 Schottky barrier diode. 
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Аннотация. Статья посвящена анализу электрических свойств барьерных диодных структур Шоттки на основе оксида гал-
лия, выращенных методом хлорид-гидридной газофазной эпитаксии с использованием подложки Al2O3. Для образцов с раз-
личным количеством примеси Sn исследованы: изображения поперечного сечения и поверхности, полученные методом раст-
ровой электронной микроскопии; рентгеновские дифрактограммы; вольтамперные характеристики слоев Ga2O3, как с 
контактными площадками, так и без них. Определена величина оптимального легирования Ga2O3 и установлены параметры 
обработки поверхности перед нанесением контактных площадок. 
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